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Stochastic process for the dynamics of the turbulent cascade
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The data on velocity increments over a distance / and turbulent energy dissipation on a box of size /
are, in the inertial range, well described by the phenomenological multifractal models of fully developed
turbulence. These quantities and models, however, do not specify the time correlations and therefore are
not a complete parametrization for the dynamics of the turbulent cascade. An asymmetric stochastic
process on a tree is proposed as a phenomenological model to parametrize the dynamics of the turbulent
cascade. In the framework of this model, any concrete assumptions about the physical parameters of the
cascade are easily related to the structure of the temporal correlations and, therefore, may be checked by
comparison with experiment. As an example, we show how to relate the decay of the temporal correla-
tions to the scale dependence of the lifetimes of the eddies at different length scales. From the hierarchi-
cal structure of the proposed process and the coexistence of many different time scales, we predict
specific deviations from exponential behavior which may be checked by two-point correlation experi-

ments.

PACS number(s): 47.27.Gs, 05.40.+j

I. INTRODUCTION

One of the most interesting phenomena in fully
developed turbulence is the occurrence of an energy cas-
cade from the macroscopic length scale L of the experi-
mental apparatus down to smaller and smaller length
scales. Length scales in the range L >>/ >>7, 1) being the
scale where the fragmentation process is stopped by dissi-
pation, are said to be in the inertial range. In the inertial
range, viscosity effects are not important and Kolmo-
gorov [1] proposed long ago a scaling theory with con-
served energy transfer between length scales. From scale
invariance and the assumption that turbulence is space
filling, it would follow that the velocity fluctuation v (/)
over an active eddy of size / scales as

(lsoD)ey ~1% (1)

with §,=p /3. A related quantity is the locally averaged
energy dissipation €; over a ball of diameter /,

(efy~1" . )

Kolmogorov’s refined scaling hypothesis [2] providing a
relation between the exponents.

There is now strong evidence [3-6] that {, is not p /3.
This is traced back to the fact that turbulence is not
space filling [7] and the volume of the active eddies may
change when the energy is transferred from the scale /,
to the scale /, ;. This leads naturally to a fractal struc-
ture for the cascade with fractal dimension less than 3.
For example in the simple 8 model [8] the rate of energy
transfer
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does not change along the cascade but the total mass of
the active eddies is multiplied by M at each step. Then
the exponent ¢, in Eq. (1) becomes

&, =ph+3—D

with h =(D —2)/3, where D is the fractal dimension, re-
lated to M by

log,M =D —3

if the length scales are related by /, =1,27".

The 8 model as well as a log-normal model [2] for the
distribution of E, are, however, in contradiction with the
experimental results on moments of higher order for the
velocity structure functions [5,6]. This fact led to the pro-
posal of several multifractal models [9—13]. Here one as-
sumes that, at each scale [,, there are several distinct
multipliers M, (k) which are chosen according to some
probability law. That is, the energy transfer may take
place according to several distinct dimensional routes.
Requiring a fixed energy transfer rate one obtains

(31)3(]() 8U3+1(k)
=M, (k) (3)
ln ln+1

Hence at scale [, the velocity fluctuation in each eddy de-
pends on the fragmentation history which is defined by
the product M|M, - - - M,. Then

i=1

" —1/3
dv, ~1173 ‘HM,] 4
and
(180, (1 NPY ~ 127 [ TTi= dM, M} P P(M, - - M,,)
(5)
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P(M, ---M,) being the occurrence probability for the
sequence M, ‘- - M,. At the level of precision of the ex-
isting experiments, agreement with the data is already ob-
tained if one assumes independent fragmentations

P(M, - M,)=[[P(M,) 6)

i=1
and a simple binomial process
P(M)=C8,+(1-C)8,,, . (7)

Two important ingredients in this and in most other
multifractal models are the existence of the same multi-
plier probability density at all levels of the cascade and
the statistical independence of the multipliers at one level
from those at previous levels. Although statistical in-
dependence is contradicted by experiment [14], the un-
correlated level-independent multiplier models give a
good representation of the experimental results [14,15].
Ultimately these models should be understood in more
fundamental terms from solutions of the Navier-Stokes
equation. The idea that the energy transfer down the cas-
cade takes place according to several distinct dimensional
routes receives some support from direct numerical simu-
lations [16] of the Navier-Stokes equation, which show
that localized structures are largely responsible for inter-
mittency effects and deviations from Kolmogorov scaling.
But, on the other hand, recent approximate numerical
solutions [17] of the Navier-Stokes equation indicate ex-
tremely small scaling corrections in the inertial range.
This might mean that

(1) in future experiments at higher Reynolds number
the scaling corrections will eventually go away, or that

(2) closer attention should be paid, in the interpretation
of the experimental results, to the narrowing of the iner-
tial range for higher order moments, or that

(3) a much higher density of large wave number vectors
is needed, in the numerical solutions, to capture the inter-
mittency effects.

Whatever the situation may be, it points to the need for
further refined experiments in this field. It would also be
important to obtain accurate information not only on the
space correlations

(Jlo(x +D—v(x)[[Py={||sv (D[P (8)

but on the time correlations
(|1dv (L, +de)dv(l,2)||9) 9)

as well. The space correlations (8) reflect the geometry
and the scale dependence of the energy transfer down the
cascade, whereas the decay of the temporal correlations
(9) is a direct test of the decay dynamics of the eddies at
scales = /.

Assumptions of the type of Egs. (6) and (7) only define
the probability distribution at each level of the cascade
tree (Fig. 1). They make no statement concerning the
time evolution and the time scales of the eddies in the
cascade. The multifractal models are phenomenological
models which are essentially static, in the sense that they
only describe the time-averaged statistical properties of
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FIG. 1. State space at level n for a dyadic turbulent cascade.

the cascade. Even at the phenomenological level, one has
to go beyond the usual multifractal models to be able to
characterize the time correlations. That is, a definite dy-
namics must be specified for the stochastic process. That
is the purpose of the present paper. By specifying a sto-
chastic process for the dynamics of the cascade tree one
should be able, at least, to parametrize the time correla-
tions in terms of a small number of parameters to be fixed
by experiment. On the other hand some of the predic-
tions, namely, the deviations from exponential decay of
the time correlations, are, we believe, largely independent
of the precise value of the parameters.

The physical quantities for which we model the time
correlations are quantities like the velocity fluctuations
Sv(l) or the energy dissipation €;. We will be concerned
with the internal dynamics of the cascade itself [18], not
with the changes induced by the fluid motion. Therefore
our model will apply, for example, to quantities like

(€,(x(1),1)€,(x(0),0)),

x (t) being the Lagrangian position of the fluid element
originally at x(0).

The construction of the stochastic process and the pa-
rametrization of time correlations from the solutions of
the Chapman-Kolomogorov equation are discussed in the
next section.

II. A STOCHASTIC PROCESS FOR THE CASCADE
AND THE PARAMETRIZATION
OF TIME CORRELATIONS

For definiteness we will consider a binary cascade tree.
Results similar to those derived here hold for finite trees
of any type. In particular, the explicit solution of the
Chapman-Kolmogorov equation that is used, Eq. (15),
holds for any prime tree.

For a binary cascade tree (Fig. 1) we use a dyadic label-
ing for the possible states at each level. The state space
V, at level I, will be the set of all products MV - - - M
with M'V€M,,M,. There are 2" elements in ¥, and the
probability of the state a is

ngla) n(a)

pe=PMV - - M"M)=C""(1—-C)"", (10)

where ny(a) and n,(a) are the number of zeros and ones
in the dyadic labeling of the state.



3538

The multifractal multiplier models make statements
about these probabilities which, as we know, are sufficient
to interpret the experimental results on velocity incre-
ments over a distance / and the turbulent energy dissipa-
tion on a box of size . These quantities test the invariant
probability measure but provide no detailed test of the
dynamics of the cascade. If one wants, for example, the
time correlations at a point moving with the free-stream
velocity of the fluid, one should explicitly consider mod-
els for the dynamics, in state space, at each level n. Many
different processes are compatible with the same invari-
ant measure p,. The most unstructured process would
correspond to the statement that if at time zero one finds
the state a, then the transition probability to the state 3,
at time ¢, is proportional to pg. For the turbulent cascade
the unstructured process does not seem to be natural be-
cause the transition probabilities should somehow be re-
lated to the lifetime of the eddies, not simply to the sta-
tionary measure. If, for example, the lifetime of eddies in
the inertial range scales as [, /dv,,, we expect large eddies
to live longer than small eddies. That is, if at time zero
the fluctuation &v, (x(0)) at the point x(0) is receiving its
energy through a fragmentation history leading to the
state a then, a short time At thereafter, we expect to find,
at the Lagrangian coordinate x(A7), a different state
which is nearby in the sense of the natural ultrametric
distance in the tree. Recall that the natural distance of
two points in a tree is the (ultrametric) distance associat-
ed with the p-adic labeling of the tree or, equivalently, the
number of steps one has to go back to find the first com-
mon ancestor of the two points.

We assume that the dynamics of the turbulent cascade
may be described by a Markov process. This amounts to
assuming that the set of variables used to characterize the
cascade at all length scales at any given time provides a
complete description of the dynamical state. That is, no
additional set of time-shifted variables is needed to pre-
dict the future behavior of the system. To characterize a
Markov stochastic process on a tree one has to solve the
Chapman-Kolmogorov equation for the transition proba-
bilities,

3,p(yt1BO)= [ da{W(y|at)p(at|Bo)
—Wi(alyt)p(yt|BO)} . (11

p(yt|B0) denotes the conditional probability to find the
state y at time ¢ given that the state at time zero is f3.
W(ylat) is the transition kernel between states a and y
in time z.
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For transition kernels that depend only on the distance
W(ylat)=W(|y —al|), Ogielski and Stein [19] found the
solution of Eq. (11). Albeverio and Karwowski [20,21]
have also constructed the stochastic processes on arbi-
trary p-adic fields Q, for the case where the jumping ker-
nels depend only on the distance between p-adic balls (see
also [22]). However, it is easy to see from the equation
for the probability densities :

3ply,1)= [da{Wiylat)pla,t)—Walyt)p(y,t)} (12)

that if W(y|at)=W(|y —al) then the invariant density
is p(y)=const. For the stochastic process of the tur-
bulent cascade we may, in general, require a nonconstant
invariant density. From (12) it follows that with

W(ylat)=p(y)u(ly —al) (13)

the invariant density is p(y) and, at the same time, full
account is taken of the dependence of the transition prob-
ability on the distance between the points ¥ and « in state
space. A stochastic process with asymmetric jumping
kernels, as in Eq. (13), may therefore be appropriate to
describe the dynamics of the turbulent cascade. A gen-
eral treatment of asymmetric stochastic processes of this
type has been given in Ref. [23] for p-adic fields (and
adeles). For finite trees the results to be used are those
that refer to processes on p-adic balls, which we summa-
rize below (adapted to a finite tree notation).

We denote by p'® the asymptotic occupation probabili-
ty of the state  at the level n of the tree. Then p'®, is
the occupation probability of the branch that starts at the
level n —r and contains a (see Fig. 1). The occupation
probabilities at different levels are, of course, related by

probability conservation. For example, p'3) ,=p'3+p¥.

n—1
Also p$?),=p{*)|. For the distance-dependent part of the
transition kernel in (13) we use the notation u(n,k) for a
transition, at the level n, to a distance k (Fig. 2). We then
define the quantities
n
o)== [u(n,k)—u(nk+1)p\, (14)
k=j

with u(n,n +1)=0 by definition. Physically we think of
the probabilities p'®' as referring to physical variables at
the scale [, =1,27", [, being a typical macroscopic length
of the system.

The transition probability, in time ¢, between the states

a and f3, solution of the Chapmann-Kolmogorov equa-
tion, is [23]

n_daB 1 (a) (a)
1 1 10n.d_ +k+1 1 tonq
pBtla0)=p 11+ 3 7 - e TP ——— P(1—85,) 1, (15)
k=0 | Pn—(d,g+k) Pn—(dg+k+D Pr—d,,

where d 5 is the tree distance between a and B(d 5= |B—al).
Once the transition probability is known, the time correlation of a random function f is obtained from

(f(Of)= [dBda f(Bp(Btla0)f(a)pla) .
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Using Egs. (14) and (15) one obtains

n—d B—-l
& 1 1

<f<t)f(0)>—<f>2=2p‘n""pﬁf’f(a>f<ﬁ>{ b @ T @

B k=0 | Pn—(d,g+k) Pn—(dg+k+1)

Xexp |—t i lu(n,r)—u(n,r+1)p',

r=daB+k+l
— (a)l exp{—t > [u(n,r)—u(nr+1)1pt, \(1—8[3’0‘)} . (16)
""daB ’=daB

Equation (16) is a very general expression in the sense that it depends only on the form (13) assumed for the transition
kernels in the tree. Therefore it may be used as a tool to test any specific hypothesis on the physical nature of the dy-
namics of the turbulent cascade. As an example, we will compute the time correlations under the assumption that, at
level n, transitions involving a jump to a distance k are controlled by the lifetime of the eddies at level n —k, that is,

2n-k X

A

(17)

uln,k)=uln —k)=

A is a normalization factor and Y a scaling exponent for the lifetime of the eddies. Furthermore, for simplicity and to
obtain closed analytic expressions, we consider the case C =1 in Eq. (10). Actually this leads to a uniform probability
distribution and differs, for example, from the value % chosen in the multifractal B model to fit the data. However, we
believe that the qualitative features, namely, the deviation from the exponential decay, are not much affected by our
simplifying choice. In any case, accurate results for any C and any set of transition kernels may always be obtained by
performing numerically the sums in Eq. (16).

We consider the correlations in the state space V,,, that is, {a(?)a(0)), —{a)2, where a(t) takes values on the set of

all products MV - - - M with M’ € {M,,M}. Using Eq. (10) (C=1) and Eq. (17) one obtains
n . .
(a(Da(0)), —(a))=22"(M§+M?)" | 3 2M M, (My+M ¥ >(M+M?) IS, +S, ¢, (18)
j=1
[
where for j70 with
Yy 1—27X
= X—_—
" 2~k2 n—1 i zln'r*l)kz 1 =4 1—2—(x+D 7’ (21)
S’J—e 1 Ezn—r—le 1
r=j ky=x+1. (22)
(n—jk . .
_2n-je"k12 2 , 19) Performing the sums in Eq. (18),

(a()a(0)), —{a)2=2"(My+M )" 4 My—M, )

and for j =0. y w2 f2n [ 2AME+MT) |
k2 Fan=l a2 ¢ (My+M,)?
SO e 1 zzn—r—l 1 (20) r=1 0 1
r=0 —k, 2" k2
Xe ! . (23)

For large n, the sum in Eq. (23) may be approximated by
an integral and one obtains finally

(a(t)a(0)), —{a )2 =22"(My+M " "2 My—M,)

,klz“k2 logh /k,log2
x&— | —
kylog2 | kgt ]
K R R B I R ) 2

FIG. 2. Stochastic transitions associated with three different

logh (n—1)k
—r|—222_ k.2 2
k,log2 ! ” (24)

tree distances.
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where
2(M(2)+M%) (25)
(Mo +M,)?

and l"(a,x)foe"t“_ldt is the incomplete gamma
function.

With the assumption (17), the rigorous result in Egs.
(24) and (25) shows how the hierarchical structure of the
cascade tree and the coexistence of many different time
scales imply a deviation from the simple exponential
behavior, a feature known to occur in other systems as
well [24-26].

The time decay implied by Egs. (24) and (25) may, in
principle, be compared with experimentally measured
time decays of correlations to obtain information on the
scaling exponent Y. Of particular interest are the short
and the long time behaviors of Eq. (24) which are, respec-
tively,
logb /(x+1)log2
1—2X)/ 4X)] .

— and le“’“
t t

Notice that the correlations we have been computing
here are the correlations of the state variable a, at level
n, which equals the product of the multipliers M; up to
level n. These states variables are directly related to the
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physical variables 6v," and ¢, , as discussed in the Intro-
duction.

III. CONCLUSION

As we have emphasized before, the stochastic process
that we propose for the turbulent cascade is sufficiently
general to allow for the test of a large range of different
dynamical hypothesis. This would correspond to
different choices of the jumping kernels, of which an ex-
ample was presented in Eq. (17).

The characteristic prediction of the dynamical hy-
pothesis is the shape of the time correlations. Notice that
here we are concerned with the time fluctuations of the
turbulent cascade itself, not with the changes induced by
the overall motion of the fluid. This means that for a
fluid in motion with free-stream velocity U the correla-
tions to measure, for any cascade observable A, are
(A(X+Ut,t)A(X,0)). Therefore, for a moving fluid, the
experiments to be performed should probe the velocity
fluctuations at, at least, two different points, and the sep-
aration of the points must also be adjustable. This does
not seem feasible in the usual hot wire setting; however,
by probing the fluid with two laser beams, the required
correlations may, in principle, be extracted.
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